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ABSTRACT

Designing effective ranking functions is a core problem for
information retrieval and Web search since the ranking func-
tions directly impact the relevance of the search results. The
problem has been the focus of much of the research at the
intersection of Web search and machine learning, and learn-
ing ranking functions from preference data in particular has
recently attracted much interest. The objective of this pa-
per is to empirically examine several objective functions that
can be used for learning ranking functions from preference
data. Specifically, we investigate the roles of ties in the
learning process. By ties, we mean preference judgments
that two documents have equal degree of relevance with re-
spect to a query. This type of data has largely been ignored
or not properly modeled in the past. In this paper, we ana-
lyze the properties of ties and develop novel learning frame-
works which combine ties and preference data using statis-
tical paired comparison models to improve the performance
of learned ranking functions. The resulting optimization
problems explicitly incorporating ties and preference data
are solved using gradient boosting methods. Experimen-
tal studies are conducted using three publicly available data
sets which demonstrate the effectiveness of the proposed new
methods.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and
Retrieval—Retrieval functions; H.4.m [Information Sys-

tems]: Miscellaneous—Machine learning
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paired comparison, ties, functional gradient descent, gra-
dient boosting

1. INTRODUCTION
The ranking problem has been widely explored in many

fields including information retrieval and web search, recom-
mendation systems and sports such as chess playing. Rank-
ing documents with respect to a given query is the most
important problem for designing effective web search en-
gines because the ranking functions directly influence the
relevance of the search results. Several methodologies of de-
signing ranking functions have been explored in the past by
information retrieval researchers, including the vector space
model [24] and language modeling based approaches [19,25].
Those methods have been proven to be effective in both
experiments and real world applications. Due to the large
number of heterogeneous features employed in current rank-
ing functions, recent methods for document ranking tend to
rely heavily on discriminative machine learning techniques:
training sets are generated and ranking functions are con-
structed by fitting the training data. Some of these ranking
algorithms, such as RankSVM [5, 16] and RankBoost [9],
have shown encouraging improvements in performance.

One effective approach for learning ranking functions is
based on learning from preference data and is called pref-
erence learning. In the case of learning to rank web docu-
ments, preference data are given in the form that one docu-
ment is more relevant than another with respect to a given
query. Such preference data can be generated from user
clickthroughs, for example, and they also have the advan-
tage of capturing user searching behaviors and preferences
in a more timely manner [18]. Although several methods for
learning ranking functions from preference data have been
proposed [9, 16, 30], the existing methods have largely ig-
nored one important type of preference relations, i.e., ties.
A tie represents a relevance judgment indicating that two
documents are of the same degree of relevance with respect
to a query. In a sense, ties complement the preference data
and they provide a different angle for learning a ranking
function: preference data focus on the discriminative quali-
ties of documents with different degrees of relevance, while
ties provide information on the common characteristics of
documents with the same degree of relevance.

In this paper, we consider the problem of incorporating
ties in the context of preference learning. We propose a
novel framework to explore the relevance judgments of ties
for learning ranking functions. Both of the preference data
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and the ties are naturally integrated in this framework by
modeling the ties in a principled fashion. In particular, we
explore statistical models for paired comparisons to derive
the objective functions for our learning framework. Two
approaches for paired comparisons are applied to model the
ties and the preference data in this study, but other models
can naturally be adapted to our framework as well. We then
apply gradient descent in function spaces to optimize the
proposed objective functions in order to learn the ranking
functions [10,30].

Our experimental studies on three publicly available data
sets show that the performance of the learned ranking func-
tions can be significantly improved by taking ties into ac-
count, so ties should be employed when they are available.
More interestingly, we find that the performance improve-
ment at the top-ranked results is more significant by includ-
ing ties. This is because both the shared features of rel-
evant documents and the discriminative qualities between
relevant and irrelevant documents are captured by includ-
ing ties. Thus incorporating ties are especially beneficial to
web search engines since they tend to focus more on the top-
ranked results. Another interesting observation is that ties
are more effective when multiple levels of relevance judge-
ments are available.

The rest of this paper is organized as follows: In Section 2,
related studies of learning to rank are briefly surveyed. Then
we analyze the properties of ties in Section 3. The loss func-
tions of our framework are proposed based on the statistical
models for paired comparisons discussed in Section 4 and 5.
In Section 6, we discuss functional gradient descent methods
for optimizing the proposed objective functions. In Section
7, we report and analyze the results of experimental studies
on three publicly available data sets. Finally, we conclude
this work and point out some directions for future research.

2. RELATED WORK
Many methods for designing ranking functions have been

proposed in the past years. Vector space model [24] rep-
resents queries and documents as vectors of features, so
the degree of relevance can be calculated by the similar-
ity between feature vectors of the documents and those of
the queries. The Okapi BM25 ranking function is proposed
based on the vector space model and applied in many in-
formation retrieval systems [23]. Language modeling based
methods consider the relevance of a document with respect
to a query in a probabilistic framework and estimate the
parameters in probability models that describe whether a
document is relevant to a query [25].

In recent years, the ranking problem is frequently solved
under the supervised machine learning framework [3, 7, 9,
16, 28–30]. This learning to rank approaches are capable
of combining different kinds of features to train ranking
functions. These approaches to learning ranking functions
are usually based on the advanced techniques developed for
other machine learning tasks. The problem of ranking is
usually formulated as that of learning a ranking function
from pair-wise preference data. The idea is to minimize the
number of contradicting pairs in training data. For exam-
ple, RankSVM [16] uses support vector machines to learn
a ranking function from preference data. RankNet [3] ap-
plies neural network and gradient descent to obtain a rank-
ing function. RankBoost [9] applies the idea of boosting to
construct an efficient ranking function from a set of weak

ranking functions. The studies reported in [30] proposed a
framework called GBRank using gradient descent in func-
tion spaces [10, 11], which is able to deal with complicated
features in the context of web search. Other methods for
learning ranking functions are proposed in [4,12]

Another approach to learning a ranking function address
the problem of optimizing the loss function directly related
to the performance measures of information retrieval, such
as precision, mean average precision and Normalized Dis-
count Cumulative Gain [6, 17, 28, 29]. The idea of these
methods is to obtain a ranking function that is optimal
with respect to some information retrieval performance mea-
sure. Since their objective functions are directly related to
the performance measures, these methods show good per-
formance in many practical situations. However, most of
the performance measures are defined by absolute relevance
judgements. As a result, these methods require the abso-
lute relevant judgements, i.e., labeled data, in order to learn
ranking functions. Considering the fact that collecting abso-
lute relevant judgements is expensive and time-consuming,
the application of these method can be limited.

3. EFFECTIVENESS OF TIES
Both ties and preference data arise in many scenarios of

learning ranking functions for Web search engines. Pref-
erence data are usually extracted from two sources: user
clickthroughs and absolute relevant judgments.

Clickthroughs. Commercial search engines can readily ob-
tain large amounts of data recording the interactions
between the users and the search results of search en-
gines. Specifically, user clickthroughs can be used to
analyze the preferences of users over the search results.
Since this approach does not require manual labeling,
it is the most frequently applied method to extract
preference data. There are several studies on infer-
ring preference data from clickthroughs [18]. Most of
these methods make use of heuristic rules as well as
the statistics of user behaviors, such as clickthrough
rates.

Absolute relevant judgments. In absolute relevance
judgments labels are assigned to each documents
indicating explicitly the degree of the relevance of
the document with respect to a query. For example,
four relevance levels representing prefect, excellent,
good and bad can be applied to each document.
Whether a document is preferred to others can be
directly inferred form the labels of absolute relevance
judgments. Although those judgments are more
expensive to obtain compared with those extracted
from clickthroughs, they tend to contain less noise.
Interestingly, the results of [30] show that it is more
effective to transform the absolute relevant judgments
into preference data before learning ranking functions.

An important observation is that ties can also be obtained
from these two sources. For clickthroughs, heuristic rules
can also be developed for extracting ties. For example, a tie
can be generated if the clicks of two documents frequently
occur together. In the case of absolute relevant judgements,
a straightforward approach is to consider pairs of documents
with the same grade of relevance as ties. Since ties can be
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extracted through methods similar to the methods for pref-
erence data generation, training data for preference learning
should be expanded to include ties. More importantly, we
will show that incorporating ties leads to improvements in
the performance of the learned ranking functions.

Existing preference learning methods only consider prefer-
ence data and ignore the extra constraints that are provided
by ties. To illustrate the effect of ties, we consider a toy
problem shown in Figure 1. Suppose that we need to rank
four documents d1, d2, d3 and d4 in that order with respect
to some given query. For the sake of clarify, we consider
the simple case of ranking those documents by their pro-
jection on a straight line. Assume we have the preference
data: d1 is preferred to d3 and d2 is preferred to d4, but the
preference relation between pairs (d1, d4) and (d2, d3) are
not available. Such kind of situations usually occur when
the preference data are extracted from user clickthroughs.
The ranking function obtained may be represented by the
thin line in the figure. We observe that the pair d2 and d3

are ranked incorrectly. However, if we include ties between
pairs (d1, d2) or (d3, d4), the result of ranking is improved.
The tie between (d1, d2) requires that d1 and d2 have the
same relevant scores (similarly for d3 and d4). As a result,
the ranking function becomes the thick line in the figure.
In this case, ties provide additional descriptions of the user
preference and the ranking function is refined by utilizing
these information. From the above example, we can see
that ties indeed provide new information about the rank-
ing function and can enhance the performance of learned
ranking functions.

Figure 1: Illustration of ties

4. MODELS FOR PAIRED COMPARISONS

WITH TIES
We now examine the question of how to make use of ties in

learning ranking functions. We will propose a novel frame-
work that integrates both ties and preferences data in a sin-
gle objective function. To this end, let D = {d1, d2, . . . , dc}
be the set of feature vectors of all query-document pairs in
consideration.1 We denote ties and preferences as follows:
Given the feature vectors of query-document pairs x and y,
let x ≻ y denote that x is preferred to y and x = y denote
that x and y is preferred equally.

The basic ingredient of our framework is the statistical
models for paired comparisons and they provide a princi-
pled approach for modeling ties. Those models have been
widely used in statistics, psychology and machine learning,
two of the more well-known ones are Bradley-Terry model

1A detailed discussion of the various types features extracted
for query-document pairs can be found in [30].

and Thurstone-Mosteller model [2,26]. Most of these models
can be unified under the framework of general linear models
as discussed below [8].

4.1 General Linear Models
Given a nondecreasing function F : R 7→ R satisfying

F (+∞) = 1, F (−∞) = 0 and F (x) = 1 − F (−x), the
probability that document x is preferred to document y is
expressed as:

P (x ≻ y) = F (h(x) − h(y)) (1)

where h(x) and h(y) are the scores of document x and y
given by the ranking function h, x is ranked higher than y if
h(x) > h(y). The original general linear models do not have
the ability to express the case that two items are equally
preferred. However, it can be extended to incorporate ties
as follows:

P (x ≻ y) = F (h(x) − h(y) − ǫ) (2)

P (x = y) = F (h(x) − h(y) + ǫ) − F (h(x) − h(y) − ǫ)

(3)

The parameter ǫ is a threshold that controls the probabil-
ities for ties. When the parameter ǫ = 0, the new model
is identical to the original general linear models. In this
study, we apply two special cases of general linear mod-
els: the Bradley-Terry model and the Thurstone-Mosteller
model.

4.2 Bradley-Terry Model
The Bradley-Terry model is widely used for paired com-

parisons, and its first use in learning ranking functions ap-
pears in [3]. Under this model, the probability of preference
for a pair is given as follows:

P (x ≻ y) =
eh(x)

eh(x) + eh(y)
(4)

It can be observed that the Bradley-Terry model is a special
case of the general linear model by letting F (x) = 1

1+exp(−x)
.

So the Bradley-Terry model can be extended to incorporate
ties by substituting 1

1+exp(−x)
for F (x) in Equation (2) and

(3) [22]:

P (x ≻ y) =
eh(x)

eh(x) + θeh(y)
(5)

P (x = y) =
(θ2 − 1)eh(x)eh(y)

(eh(x) + θeh(y))(eh(y) + θeh(x))
(6)

Similar as in the general linear models, the parameter θ = eǫ

is a threshold that controls the probabilities of ties. When
the parameter θ = 1, the new model above is identical to
the original Bradley-Terry model in Equation (4).

4.3 Thurstone-Mosteller Model
The Thurstone-Mosteller model is another probabilistic

model for paired comparisons. Unlike the Bradley-Terry
model, the Thurstone-Mosteller model is based on the Gaus-
sian distribution. It can be obtained by letting F (x) be the
Gaussian cumulative distribution in the general linear mod-
els.

P (x ≻ y) = Φ(h(x) − h(y) − ǫ) (7)

P (x = y) = Φ(h(x) − h(y) + ǫ) − Φ(h(x) − h(y) − ǫ)
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where Φ(x) = 1√
2π

∫ ∞
−x

e−
x
2

2 dx is the Gaussian cumulative

distribution function.
Unless otherwise stated, we use the terms Bradley-Terry

model and Thurstone-Mosteller model to represent the cor-
responding model with ties in the rest of this paper.

5. LOSS FUNCTIONS
Assume that we have observed the preference data and

ties {(xi, yi)}
N+M

i=1 where xi ≻ yi for all i = 1 . . . N and xi =
yi for all i = N+1, . . . , N+M . Our goal is to learn a ranking
function h from this set of data. Following the principle of
empirical risk minimization [13], we need to measure how
good a ranking function is with respect to the training data.
The empirical risk is defined as follows:

R̂[h] =
N+M
∑

i=1

L(h, xi, yi)

=

N
∑

i=1

L(h, xi ≻ yi) +

N+M
∑

i=N+1

L(h, xi = yi) (8)

where L(h, xi ≻ yi) and L(h, xi = yi) are the loss of the
function h on the pairs xi ≻ yi and xi = yi, respectively.
Based on the discussions in Section 4, we can use the nega-
tive log of the data likelihood as the loss:

L(h, xi ≻ yi) = − log P (xi ≻ yi) (9)

L(h, xi = yi) = − log P (xi = yi) (10)

The probabilities P (xi ≻ yi) and P (xi = yi) are determined
by the paired comparison models in Section 4.

Bradley-Terry Model. The loss function for the Bradley-
Terry model can be expressed as:

LBT(h, x ≻ y) = log
(

1 + θeh(y)−h(x)
)

(11)

LBT(h, x = y) = log
(

1 + θeh(x)−h(y)
)

+ log
(

1 + θeh(y)−h(x)
)

− log(θ2 − 1)

Thurstone-Mosteller Model. Analogously, the loss
function for the Thurstone-Mosteller model is

LTM(h, x ≻ y) = − log Φ(h(x) − h(y) − ǫ) (12)

LTM(h, x = y) = − log(Φ(h(x) − h(y) + ǫ)

−Φ(h(x) − h(y) − ǫ)) (13)

Substituting LBT and LTM defined above into Equation
(8), we obtain the loss functions we need to minimize in
order to learn the ranking functions.

6. LEARNING BY FUNCTIONAL GRADI-

ENT BOOSTING
In Section 5, we define the empirical risk function R̂[h].

The learning process is to obtain a function h∗ from a func-
tion space H that minimizes the empirical risk R̂[h]. For-
mally,

h∗ = arg min
h∈H

R̂[h] (14)

In order to obtain h∗, we apply the gradient boosting algo-
rithm [10,30,31]. The idea of gradient boosting is to approx-
imate h∗(x) by iteratively constructing a sequence of base

Algorithm 1 Functional Gradient Boosting

Input: A finite sample of query document pairs
{(xi, yi)}

N+M

i=1 , the empirical risk functional R̂[h(x)]
Output: h(x), which minimizes the empirical risk func-

tional R̂[h(x)]
1: Initialize h0(x) = g0(x)
2: for t=1, 2, . . . T do

3: Compute gx
ti = −∇R̂[ht(xi)], and gy

ti = −∇R̂[ht(yi)]
for i = 1, . . . , N + M

4: Fit a base learner gt(x; αt) based on training data

(x1, g
x
t1), . . . , (xN+M , gx

t,N+M ),

and (y1, g
y
t1), . . . , (yN+M , gy

t,N+M ).
5: Update the approximation by ht(x) = ht−1(x) +

βgt(x; αt), where β is the shrinkage factor.
6: end for

7: return hT (x)

learners. So we need to approximate h∗(x) as:

h∗(x) = g0(x) +

T
∑

t=1

βtgt(x; αt) (15)

gt(x;αt)(t = 0, . . . , T ) are called base learners and αt rep-
resents the parameters of base learner gt(x), and g0(x) is
the initial approximation of h⋆(x). The main idea is to per-
form gradient descent in function spaces. At each iteration,
a base learner gt is chosen to be the gradient of R̂[h] with
respect to h at the current iterate. More precisely, the next
iterate ht(x) is given by

ht(x) = ht−1(x) − βt∇R̂[ht−1(x)] (16)

However, we can not compute the value of −∇R̂[ht(x)] at
all x in general, but we can compute its values at a finite
sample {xi, yi}

N+M

i=1 ,

gx
ti = −∇R̂[ht(xi)], gy

ti = −∇R̂[ht(yi)], i = 1, . . . , N + M (17)

Follow the techniques developed in [10, 30], we apply the
base learner for constructing an approximation gt(x; αt) of

−∇R̂[ht(x)] from the following finite training data,

(x1, g
x
t1), . . . , (xN+M , gx

t,N+M ), (y1, g
y
t1), . . . , (yN+M , gy

t,N+M ).

We summarize the above algorithm in Algorithm 1. In our
experiments, the base learners are regression trees and we
usually set the number of terminal nodes to a small num-
ber around 10. There are two other parameters need to
determined. They are the number of the iterations T and
the shrinkage factor β which are usually found by cross-
validation.

7. EXPERIMENTAL STUDIES
In this section, we apply the proposed algorithms to three

publicly available real-world data sets and report the results
of the experimental studies.

7.1 Data Description
We used the Letor2 data collection [20]. This data collec-

tion contains three data sets: the OHSUMED data set, the

2http://research.microsoft.com/users/tyliu/LETOR/
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TREC2003 data set and the TREC2004 data set which we
now briefly describe.

OHSUMED. The OHSUMED data set is a subset of
the MEDLINE database, which is popular in the informa-
tion retrieval community. This data set contains 106 queries.
The documents are manually labeled with absolute relevance
judgements with respect to the queries. There are three lev-
els of relevance judgments in the data set: definitely relevant,
possibly relevant and not relevant. Each query-document
pair is represented by a 25-dimensional feature vector that
contains the most frequently used features in information re-
trieval, for example tfidf, BM25 score etc. The total number
of query-document pairs is 16,140.

TREC2003. This data set is extracted from the topic
distillation task of TREC20033 . The goal of the topic dis-
tillation task is to find good websites about the query topic.
There are 50 queries in this data set. For each query, the
human assessors decide whether a web page is an relevant
result for the query, so two levels of relevance are used: rel-
evant and not relevant. The documents in the TREC2003
data set are crawled from the .gov websites, so the fea-
tures extracted by link analysis are also used to represent
the query-document pair in addition to the content features
used in the OHSUMED data set. The total number of fea-
tures is 44 and total number of query-document pairs is
49,171.

TREC2004. This data set is extracted from the data
set of the topic distillation task of TREC2004, so it is very
similar to the TREC2003 data set. This data set contains
75 queries and 74,170 documents with 44 features.

All these data sets are labeled in the form of absolute
judgements, so it is necessary to convert them to preference
data. Given a query q, let x and y be the feature vectors for
the query-document pairs (q, dx) and (q, dy), respectively.
If dx has higher grade than dy, the preference x ≻ y is
included, while if y has greater grade than x, the preference
y ≻ x is included. Similarly, in the cases of ties, a tie x = y
is included if dx and dy have the same grade.

7.2 Evaluation Measures
In order to evaluate the performance of the proposed al-

gorithms, three evaluation measures are applied: Precision,
Mean average precision and Normalized Discount Cumula-
tive Gain [1, 15]. All these evaluation measures are widely
used for comparing information retrieval systems.

Precision. Given the binary relevance judgment, the pre-
cision of a ranked list is measured by the fraction of the
retrieved documents that are relevant. In our experimental
studies, precision at position n (P@n) is used to measure
the quality of the top n results of the ranking list.

P@n =
No. of relevant docs in top n results

n
(18)

Mean Average Precision. The average precision of a
query is the average of the precision scores after each rele-
vant document retrieved. Formally, average precision (AP)
is calculated by the following equation.

AP =

∑

i
P@i × reli

No. of relevant documents
(19)

where reli is the indicator function whether the i-th doc-
ument of the ranking list is relevant to the query. Mean

3http://trec.nist.gov/

Average Precision (MAP) is obtained by the mean of the
average precision over a set of queries. Compared with P@n
measure, the MAP score is sensitive to the entire ranking
list and contains the aspects of recall as well as precision.

Normalized Discount Cumulative Gain. P@n and
MAP are defined based on binary judgements: relevant and
irrelevant. In the case of multiple levels of judgements, a
more sophisticated evaluation measure called Normalized
Discount Cumulative Gain (NDCG) is used [15]. Unlike
P@n and MAP, NDCG has the capability to deal with mul-
tiple levels of relevance. The NDCG value of a ranking list
is calculated by the following equation:

NDCG@n = Zn

n
∑

i=1

(2ri − 1)/ log(i + 1) (20)

where ri is the grade assigned to the i-th document of the
ranking list. In our experiments, ri takes value of 0, 1 and
2 in OHSUMED data set for not, possibly and definitely
relevant documents respectively. For data sets with binary
judgments, such as TREC2003 and TREC2004 data set, ri

is set to 1 if the document is relevant and 0 otherwise. The
constant Zn is chosen so that the perfect ranking gives an
NDCG value of 1.

7.3 Experimental Design and Results
We want to address the following questions:

1. Are ties effective for enhancing the performance of the
ranking functions? How much improvement can we
obtain by incorporating ties?

2. For what types of search problems will ties improve
the performance of ranking significantly?

3. How does the performance of our algorithms com-
pare with the existing methods. In this study, we
consider two preference learning methods RankSVM,
RankBoost and FRank [27] for comparisons. We also
compare our methods to AdaRank [28], which learns a
ranking function through directly optimizing the per-
formance measures.

4. What is the convergence behaviors of our proposed
algorithms? The ranking functions are obtained by
gradient boosting method which is an iterative process,
so we need to investigate the rate of convergence of our
algorithms.

Each data set is partitioned on queries to perform 5 fold
cross-validation. For each fold, there are three subsets of
data: training, test and validation set. For each loss func-
tion described in Section 5, we tune the algorithms on the
validation set to determine the parameters. All our experi-
ments are performed on a server with four 3.2G CPUs and
2GB main memory. The gradient boosting algorithm takes
about 1 hour for training both the Bradley-Terry model and
the Thurstone-Mosteller model over the TREC2004 data
set, which is the largest data set in our experiments. For
AdaRank, we use the version for optimizing the mean av-
erage precision for comparison in this study. The results of
RankSVM, RankBoost, AdaRank and FRank are reported
in the Letor data set.

7.3.1 Experimental Results

For the first question, we apply both Bradley-Terry model
and Thurstone-Mosteller model to the three data sets and
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Table 1: Performance comparisons over OHSUMED data set

MAP NDCG@1 NDCG@3 NDCG@5 P@1 P@3 P@5

BT 0.4537 0.5288 0.4911 0.4759 0.6650 0.6211 0.5806
BT-noties 0.4488 0.4753 0.4664 0.4623 0.6288 0.5911 0.5626

TM 0.4543 0.5269 0.4794 0.4714 0.6654 0.6146 0.6010
TM-noties 0.4476 0.5072 0.4764 0.4652 0.6252 0.6047 0.5803

RankSVM 0.4469 0.4952 0.4649 0.4579 0.6338 0.5924 0.5766
RankBoost 0.4403 0.4977 0.4726 0.4502 0.6048 0.5861 0.5446
AdaRank 0.4419 0.5420 0.4803 0.4554 0.6615 0.5831 0.5373
FRank 0.4463 0.5449 0.4995 0.4688 0.6710 0.6175 0.5597

Table 2: Performance comparisons over TREC2003 data set

MAP NDCG@1 NDCG@3 NDCG@5 P@1 P@3 P@5

BT 0.2601 0.4400 0.3704 0.3487 0.4400 0.3400 0.2720
BT-noties 0.2341 0.4200 0.3603 0.3456 0.4200 0.3333 0.2680

TM 0.2562 0.4600 0.3727 0.3583 0.4600 0.3600 0.2720
TM-noties 0.2258 0.4200 0.3512 0.3363 0.4200 0.3333 0.2640

RankSVM 0.2564 0.4200 0.3787 0.3473 0.4200 0.3400 0.2640
RankBoost 0.2125 0.2600 0.2704 0.2789 0.2600 0.2400 0.2200
AdaRank 0.1373 0.4200 0.2912 0.2424 0.4200 0.2667 0.1880
FRank 0.2451 0.4400 0.3690 0.3303 0.4400 0.3200 0.2320

Table 3: Performance comparisons over TREC2004 data set

MAP NDCG@1 NDCG@3 NDCG@5 P@1 P@3 P@5

BT 0.3852 0.4800 0.4550 0.4372 0.4800 0.4189 0.3230
BT-noties 0.3761 0.4600 0.4358 0.4294 0.4600 0.4108 0.3007

TM 0.3772 0.4800 0.4548 0.4363 0.4800 0.4112 0.3157
TM-noties 0.3674 0.4533 0.4456 0.4280 0.4533 0.4055 0.3128

RankSVM 0.3505 0.4400 0.4092 0.3935 0.4400 0.3511 0.2907
RankBoost 0.3835 0.4800 0.4640 0.4368 0.4800 0.4044 0.3227
AdaRank 0.3308 0.4133 0.4017 0.3932 0.4133 0.3422 0.2933
FRank 0.3809 0.4400 0.4479 0.4362 0.4400 0.3867 0.3227

compare the performance of the models with and without
ties. For comparisons of the different models, we report the
performance measured by both the precision and NDCG at
position 1, 3 and 5 as well as the mean average precision
(MAP). We average these performance measures over 5 folds
for each data set. The results on OHSUMED, TREC2003
and TREC2004 data set are shown in Table 1, 2 and 3,
respectively.

We can observe from the tables that the Bradley-Terry
model and Thurstone-Mosteller model with the ties (labeled
by BT and TM) outperform the corresponding models with-
out ties (labeled by BT-noties and TM-noties). These tables
show that the performance of ranking is improved (some-
times significantly) by learning ranking functions with ties.
We conduct significant tests on the improvements of BT and
TM over BT-noties and TM-noties. The results show that
the improvements in terms of NDCG@5 is statistically sig-
nificant (p-value < 0.05).

We report in Table 4 the performance improvements ob-
tained by learning ranking functions with ties. The improve-
ments over the OHSUMED data set are more significant
than that over both TREC2003 and TREC2004 data sets
in most cases. We think this is because ties are more effec-
tive when more relevant judgment levels are available while
TREC2003 and TREC2004 data sets are labeled by only two
relevant judgment levels. To further explore this point, we
construct a new data set OHSUMED-2L by combining the

definite relevant and possibly relevant judgements as a single
level and perform experiments over this new data set. We
report the improvements in performance in column five of
Table 4. Compared with learning from three levels of judge-
ments (column 2), the improvements is reduced by learning
from two levels. This observation indicates that ties can
enhance the ranking function more significantly when mul-
tiple relevant levels of judgements are applied. In the case
of multiple relevant levels, it is usually difficult to assign
documents to the right relevant levels with only preference
data. Ties provide information about the distribution of
each relevant levels. This information is able to constrain
the learning process and thus enhance the ranking functions
significantly.

Another observation from Table 4 is that the perfor-
mance improvements on the top-ranked results, for example
NDCG@1 and P@1, are more significant. The reason for the
better performance on the top-ranked results could be that
ties capture the common features of the relevant documents.
To illustrate the effect of ties, we examined the top five re-
sults for Query 79 and Query 84 of OHSUMED data set
in Table 5. The results are produced by the Bradley-Terry
model with ties and without ties, respectively. We also list
the document id and the ground-truth grade of each doc-
ument. Taking Query 79 for example, it can be observed
that the Bradley-Terry models with ties ranks the Docu-
ment 45619 in the forth position, while the model without
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Table 4: The performance improvements by including

ties measured by NDCG of top ten positions

n OHSUMED TREC2003 TREC2004 OHSUMED-2L
1 11.26% 4.45% 4.35% 4.58%
2 6.71% 6.15% 4.48% 3.61%
3 5.30% 2.80% 4.40% 4.67%
4 5.58% 4.90% 4.27% 4.33%
5 2.94% 2.99% 1.82% 2.45%
6 5.77% 4.60% 4.53% 2.75%
7 4.94% 2.50% 3.60% 1.68%
8 1.57% 2.86% 0.98% 0.66%
9 1.94% 6.32% 2.61% 0.36%
10 2.62% 2.32% 1.87% 0.33%

Table 5: Top five results of example queries on

OHSUMED data set

(a) Query 79

BT-noties BT
Rank Grade Doc-Id Grade Doc-Id

1 2 65890 2 65890
2 2 263191 2 263191
3 2 257288 2 257288
4 2 101228 2 45619

5 0 63458 2 143269

(b) Query 84

BT-noties BT
Rank Grade Doc-Id Grade Doc-Id

1 2 8653 2 145901
2 2 177517 2 177517
3 2 145901 2 8653
4 0 101228 1 205254
5 1 205254 1 32155

ties ranks it out of the top five. The reason is that the feature
vector of Document 45619 can not distinguish this document
from the irrelevant documents. Consequently, the model
BT-noties does not return it in the top results. Thus, the
performance of the model BT-noties will be reduced since
it is actually labeled by definite relevant (represented by 2).
On the other hand, since the common features of the rele-
vant documents are explicitly captured by ties, the similarity
between Document 45619 and other relevant documents is
precisely addressed. As a result, Document 45619 is ranked
at the forth position by the model Bradley-Terry model with
ties. Similarly, the model with ties ranks Document 32155
in the fifth position for Query 84 as reported in Table 5(b).

It is interesting to investigate the effect of ties extracted
from different levels of grades. To this end, we conduct ex-
periments over the OHSUMED data set by extracting ties
from relevant, possibly relevant and irrelevant documents re-
spectively. We also extract ties from both the relevant and
the possibly relevant documents. The performance mea-
sured by NDCG@5 is reported in Figure 2. It can be ob-
served that when ties are extracted from the relevant doc-
uments or both the relevant and the possibly relevant doc-
uments, the performance of the resulting model slightly re-
duced. However, if the ties are extracted from the irrelevant
documents, the decrease in performance is much more sig-
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nificant. One explanation is that the irrelevant documents
are more diverse than the relevant document and thus ties
become less effective in this case.

The performance of Bradley-Terry model and the
Thurstone-Mosteller model are comparable in most cases.
We also compare the performance of our algorithms with
RankSVM, RankBoost, FRank and AdaRank as reported in
Table 1, 2 and 3. The Bradley-Terry model and Thurstone-
Mosteller model with ties outperform both RankSVM and
RankBoost over the OHSUMED data set. On TREC2003
data set, our algorithms are comparable or slightly bet-
ter than RankSVM, but RankBoost is much worse while
on TREC2004 data set our algorithms are comparable or
slightly worse than RankBoost, but RankSVM is worse.
What causes the dramatic difference of RankSVM and
RankBoost on TREC2003 and TREC2004 data set remains
to be investigated. Again, we want to emphasize that the
focus of the paper is on investigation of the role of ties in
learning ranking functions not comprehensive comparisons
of existing methods.

In order the study the convergence behaviors of our algo-
rithms, we plot the NDCG@5 over the training, test and val-
idation set with respect the iteration number of the gradient
boosting algorithm in Figure 3. For each iteration, we aver-
age the NDCG@5 scores of all five folds of the OHSUMED
data set. It can be observed from Figure 3 that performance
on training set monotonically increases as the number of it-
erations grows, so the performance will gradually converge
to a maximum point. Similar observations can be made also
on the validation and test sets as well as over the TREC2003
and TREC2004 data sets.

8. CONCLUSION AND FUTURE WORK
In this paper, we demonstrated that incorporating can im-

prove the performance of learned ranking functions based on
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the experimental studies over three publicly available data
sets. Furthermore, we find that the improvements over the
top-ranked results are more significant since the common
features of relevant documents are explicitly captured by
ties. This promising property of ties makes them effective
for web search engines.

Future directions of research include theoretical analysis
of the effect of ties. We plan to explain the effectiveness
of ties for the ranking problem in terms of the generaliza-
tion bounds. Another direction of research is to develop new
techniques for incorporate ties with other methods for learn-
ing to rank, such as RankSVM, RankBoost and RankNet.
There several methods for online learning from preference
data [14, 21], we hope to develop learning algorithms that
both preference data and ties can be included to refine a
ranking model incrementally. Also, since our framework
is flexible to incorporate a large class of loss functions, it
is interesting to compare and analysis other loss functions
and determine what kind of characteristics the loss function
should have for the ranking problems.
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